In-vitro modelling of the lungs response to environmental nanoparticulates

By Altin Kocinaj
Supervisor: Dr. Laura Urbano
University of Hertfordshire

Introduction

Nanoparticles are particles in the range of 1-100nm having at least one dimension less than 100 nm and comprise a class of materials that exhibit unique physical, chemical, and biological properties, differing distinctly from their subsequent small molecules and bulk materials(1). Due to this they are widely used in a variety of applications and products due to their unique material properties thus human exposure is inevitable.

WHO recommendations on air pollution don’t focus on the 1-100nm range for nanoparticles(2) and typically testing the toxicity of such particles is performed using animal models, which have been in use for many years. However, regardless of the studies investigating predictability of animal studies for replicating within human clinical trials show only 37% were replicated in humans and 20% were contradicted when tested in humans, the FDA still recommend animal testing for toxicity(3).

Animal models remain the gold standard, with no standalone alternatives in representing human lung toxicity interactions. Therefore, the use of High content imaging/analysis, cell culture, traditional viability assays and expression studies will be used in conjunction to bridge this gap.

Aims

• Develop a better understanding of nanoparticle toxicology
• Produce reliable predictive models – cost and time effective
• Reduce need of animal models that are not representative

Method

The use of traditional cell culture remains un-translational standalone, however with the addition of High content imaging and analysis in conjunction with other method may provide the solution.

Cell culture

NCI-H441 (ATCC) were cultured at 37 °C in 5% CO2 atmosphere. They were seeded on a 96 well plate and incubated for 24h before exposure.

Table-1: shows the range of nanoparticles being tested

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Silicon dioxide</th>
<th>Copper Oxide</th>
<th>Polystyrene</th>
<th>AgCu</th>
<th>Zin Oxide</th>
<th>A1 test dust</th>
<th>Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper oxide</td>
<td>50µg/ml</td>
<td>100µg/ml</td>
<td>150µg/ml</td>
<td>200µg/ml</td>
<td>250µg/ml</td>
<td>300µg/ml</td>
<td>350µg/ml</td>
</tr>
<tr>
<td>Cerium (iv) oxide</td>
<td>30µg/ml</td>
<td>50µg/ml</td>
<td>70µg/ml</td>
<td>90µg/ml</td>
<td>110µg/ml</td>
<td>130µg/ml</td>
<td>150µg/ml</td>
</tr>
<tr>
<td>Wallastonite</td>
<td>20µg/ml</td>
<td>30µg/ml</td>
<td>40µg/ml</td>
<td>50µg/ml</td>
<td>60µg/ml</td>
<td>70µg/ml</td>
<td>80µg/ml</td>
</tr>
</tbody>
</table>

Results and discussion

Initial observations of the high content imaging shows dose dependent toxicity with 100µg/ml (of silicon dioxide example) having the greatest amount of cell death in comparison to lower doses of nanoparticles.

This is somewhat mirrored in the distributions of parameters of interest for which comparing different concentration exposure, were able to show discernible changes to the cells against each other and untreated cells. For example, (Figure-3) does not contain the distribution of the highest concentration of Copper oxide nanoparticles, because as like silicon dioxide no cells are viable at that concentration.

Quantitative high content analysis

Automated image acquisition allows for the capture of multiple images per well, stitched together for the segmentation of cells and quantification of cell health.

Thermofisher’s Celleste image analysis software allows for the segmentation and subsequent analysis of the images. This uses the nuclear staining and cell mask for cell segmentation (Figure-2), allowing for the quantification of marker intensity, localisation and ultimately providing information on morphometric changes from nanoparticle exposure.

A In-house method of data analysis was utilised to analyse the morphometric changes from the raw Celleste image data after segmentation allowing for distribution and population analysis over the many different parameters such as membrane permeability of the cells.

Table-2: shows the range of concentration and results of the Prestoblue Viability assay

<table>
<thead>
<tr>
<th>Concentration</th>
<th>% Cell Viability*</th>
</tr>
</thead>
<tbody>
<tr>
<td>100µg/ml</td>
<td>77.1%</td>
</tr>
<tr>
<td>33µg/ml</td>
<td>88.3%</td>
</tr>
<tr>
<td>0.4µg/ml</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure-1: shows the procedure from cell culture, NP exposure and cell fixing (PFA paraformaldehyde) to high content imaging

Figure-2: shows the segmentation of the cell through the different coloured channels, using Hoechst (nuclear stain) and Cell mask (cell stain)

Figure-3: shows the cell distributions of copper oxide exposure under different doses, looking at different parameters of interest

Figure-4: shows the Prestoblue viability assay absorption results for every NP of interest

Statistical analysis of the distributions are yet to be finalised, however the distributions do show promise in detecting minute differences with the cells after exposure. Additionally traditional assay are at this point ongoing.

Ongoing and Future work

Traditional viability assays: Prestoblue, LDH, DCFDA
- As a comparison to the cell health/high content imaging and an additional layer of toxicity profiling

Protein and gene expression studies: inflammation etc
- Develop an understanding on potential modes of action of the selected nanoparticles

Air – liquid interface models – increasing the complexity of the model as a additional layer of toxicity profiling

Exposure chamber toxicity models – most relevant in vitro model, allowing for psychologically relevant exposure

References

