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Abstract

Convolutional neural networks (CNNs) were inspired by hu-
man vision and, in some settings, achieve a performance com-
parable to human object recognition. This has lead to the spec-
ulation that both systems use similar mechanisms to perform
recognition. In this study, we conducted a series of simulations
that indicate that there is a fundamental difference between hu-
man vision and vanilla CNNs: while object recognition in hu-
mans relies on analysing shape, these CNNs do not have such
a shape-bias. We teased apart the type of features selected
by the model by modifying the CIFAR-10 dataset so that, in
addition to containing objects with shape, the images concur-
rently contained non-shape features, such as a noise-like mask.
When trained on these modified set of images, the model did
not show any bias towards selecting shapes as features. In-
stead it relied on whichever feature allowed it to perform the
best prediction — even when this feature was a noise-like mask
or a single predictive pixel amongst 50176 pixels.

Introduction

Object recognition in humans is largely a function of analyz-
ing shape (Biederman, 1987; Hummel, 2013). A wealth of
data from psychological experiments show that shape plays a
privileged role in object recognition compared to other diag-
nostic features such as size, colour, luminance or texture. For
example, Biederman and Ju (1988) showed that error rates
and reaction times are virtually identical in a recognition task
when full coloured photographs of objects are replaced by
their line drawings even when colour was a diagnostic fea-
ture. This indicates that shape-based representations mediate
recognition. Similarly, Mapelli and Behrmann (1997) found
that, for patients with an object recognition deficit (visual ag-
nosia), surface colour played minimal role in aiding object
recognition unless the shape of the object was ambiguous,
indicating that shape is instrumental to recognition, whereas
surface characteristics such as colour and texture play only
a secondary role. More recently, Baker and Kellman (2018)
have shown that participants extract shape information auto-
matically from arrays of dot patterns within the first 100ms
of stimulus onset, even for tasks where extracting this infor-
mation may be detrimental to performance on a task. Exper-
iments from developmental psychology show that this privi-
leged status of shape starts early in life and becomes stronger
with age. For example, Landau, Smith, and Jones (1988)
found that 2-3-year-old children as well as adults weight
shape more heavily than size or texture when generalising the
name of a learnt object to novel instances. They also found
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that the weight placed on shape increases in strength and gen-
erality from early childhood to adulthood.

By contrast, it is unclear whether shape plays a privileged
role in how convolutional neural networks (CNNs) categorise
objects. It is often claimed that CNNs learn representations
of objects that are similar to the representations that monkeys
and humans use when identifying objects (Rajalingham et al.,
2018), and that CNNss largely rely on learning shape represen-
tations in order to categorise objects (Kubilius, Bracci, & de
Beeck, 2016; Jozwik, Kriegeskorte, Storrs, & Mur, 2017).
On the other hand, there are a growing number of studies
that show that CNNs often categorise images on the basis
on non-shape attributes of images. This is demonstrated by
the existence of adversarial images that are confidently clas-
sified as a familiar category despite the lack of any shape in-
formation in the input (Nguyen, Yosinski, & Clune, 2015),
adversarial images that contain the correct shape but altered
colours that are confidently misclassified (e.g., categorizing
an image of an airplane as a dog when only the colour of
the plane has been manipulated), and large reductions in
performance when trained coloured images are converted to
greyscale (Geirhos et al., 2017) or the colours are inverted
(Hosseini, Xiao, Jaiswal, & Poovendran, 2017). In addition,
there are demonstrations that CNNs can easily learn to cate-
gorise random patterns of pixels that have no shape (Zhang,
Bengio, Hardt, Recht, & Vinyals, 2016). All of these findings
suggest that shape may not play a privileged role in how some
well-known and high-performance CNNs perform object cat-
egorisation.

However, some recent studies have argued that convolu-
tional neural networks can show a shape-bias. Ritter, Barrett,
Santoro, and Botvinick (2017) took an Inception model, a
high-performance CNN (Szegedy, Vanhoucke, Ioffe, Shlens,
& Wojna, 2016), and presented novel objects to the model
that had been pre-trained to recognise the categories from Im-
ageNet dataset. They found that the representations in hidden
layers were more similar for two (novel) objects that over-
lapped in shape than for two objects that overlapped in colour.
They interpret this proximity in hidden layer representations
between objects of same shape as a shape-bias. In another
study, Feinman and Lake (2018) trained a CNN on a con-
trolled dataset containing synthetic images that differed on
three dimensions: shape, colour and texture. They found that
when this dataset was constructed in such a manner that the



(a) Salt-and-pepper noise

(b) Additive noise

(c) Single diagnostic pixel

Figure 1: Hidden in plane sight. Images taken from CIFAR-10 dataset and scaled up to 224x224 pixels. (a) Image is converted
to greyscale and we add a salt-and-pepper noise-like mask to each training image; (b) Image is converted to greyscale and we
add uniform additive noise mask to each training image; (c) A single diagnostic pixel is inserted in the image (dotted red circle

is inserted here to illustrate the location of the pixel).

category name correlated with shape more than colour or tex-
ture, the network had a higher propensity for classifying novel
objects based on shape rather than colour or texture. In other
words, the network learns to reflect the feature bias of the
training set; when the biased feature is a shape, the network
shows shape-bias.

Both these studies assume that shape-bias is a property of
the environment itself. Feinman and Lake (2018) explicitly
make shape more diagnostic than any other feature in the
dataset, while Ritter et al. (2017) assume that this is implicitly
the case. However, it is not not clear that shape is necessarily
the most diagnostic feature in the environment of biological
systems and it is also unclear whether deep neural networks
would develop an inductive bias for shape when this is not
the most diagnostic feature. Our goal in this study was to test
the stronger claim that CNNs show a shape-bias even when
there is no such bias in the dataset. Within the psychological
literature it is still unsettled whether our visual system iden-
tifies objects on the basis of shape because we learn through
experience that shape is the most reliable cue to object identi-
fication or because there are innate inductive biases that make
shape a privileged cue from the beginning (for discussion see
Elman, 2008; Xu, Dewar, & Perfors, 2009).

It is certainly possible that CNNs have an inductive bias
to rely on shape given that the depth of the architecture and
pooling operations enables them to combine features of the
stimuli in a hierarchical manner where lower layers represent
high-frequency features while higher layers represent more
abstract features, such as the shape, which are invariant to lo-
cal changes of input (Bengio, Courville, & Vincent, 2013).
If shape emerges due to this hierarchical composition of fea-
tures, it is possible that it is preferred to other features (such
as colour or texture) that do not lend themselves to such a
hierarchical composition. Henceforth we use the term shape-
bias to refer to the hypothesis that the visual system has an
innate inductive bias to rely on shape cues to identify objects
rather than the view that the visual system learns to identify
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objects on the basis of whatever visual cues are most strongly
associated with object category.

Here we systematically explore the impact of non-shape
features in the categorisation performance of convolutional
neural networks on CIFAR-10 images. We introduced non-
shape features to images by adding informative noise-like
masks to the training set. We tried several types of masks
and an extreme version where the non-shape feature consisted
of just a single pixel with a location correlated to the image
category (see Figure 1). We show that vanilla CNNss, that per-
form object classification on CIFAR-10 to near human level,
nevertheless learn and depend on non-shape features that are
highly diagnostic of object categories and often fails to learn
anything about shape under these conditions. These results
did not depend on the type of network architecture used, the
learning algorithm or regularisation method indicating that
this was a property of a broad class of CNNs rather than
the particular setup chosen by us. This highlights that, even
though they mimic the hierarchical architectural and learning
processes of biological vision, the vanilla architectures and
algorithms for learning in CNNSs simply pick up whatever sta-
tistical structure is most relevant to learning the training set,
with shape playing no special role. To dispel any confusions
at the outset, we would like to emphasise that this does not
imply that CNNs do not encode shape information under any
circumstance, but that shape does not seem to be weighted
more than other diagnostic features, even when these features
are noise-like masks or the luminance of a single pixel.

Experiments

We modified the CIFAR-10 dataset (which contains 10
classes with 6000 images per class, see https://www
.cs.toronto.edu/~kriz/cifar.html) so that each image
contained not only features that pertain to the shape (e.g. ob-
ject outlines) but also features without any shape informa-
tion. As non-shape features we used noise-like masks that
were combined with the original image. Two different types



of masks were used: the salt-and-pepper noise mask turned
a certain proportion of image pixels to either black or white,
while a additive uniform noise mask added a value sampled
from a uniform distribution to each pixel of an image. We
also tested an extreme form of the salt-and-pepper noise mask
where only one pixel was turned to a particular colour. In this
case the location and colour of the pixel were different for
different categories but correlated for images within a cate-
gory. Masks were independently sampled for each category
but were either fixed for all images in a category (in which
case the mask predicted the category) or sampled from a dis-
tribution with category-dependent parameters (in which case
these parameters predicted the category). So these modified
images concurrently contained features that were related to
shape and features without shape information.

We trained the model on these modified sets of images and
tested it under three conditions. During the ‘Same’ condi-
tion, the test set was modified in exactly the same manner —
i.e., either images in each category were generated by using
the same mask as that for the training images of that cate-
gory (when the mask was fixed) or they were generated by
using the same parameters as the parameters used to gener-
ate noise masks for training images of that category (when
the mask was variable). In contrast, during the ‘Diff’ con-
dition, the noise masks (or their parameters) for each cate-
gory were swapped with another category. So, for example,
a noise mask that was used in the ‘DOG’ category during
training was inserted into images in the ‘CAT’ category dur-
ing testing. The premise here was that if the model based
it’s decisions on shape-related features, then it would ignore
the noise mask and the performance during ‘Same’ and ‘Diff’
condition should be similar. On the other hand, if the model
relied on properties of the (non-shape) mask, then it’s perfor-
mance would be worse in the ‘Diff’ condition compared to
the ‘Same’ condition. Finally, we used a third, ‘NoPix’, con-
dition to estimate the extent to which the network relied on
features of the noise mask. In this condition, we presented
the network with a version of the image without any mask,
with the premise that the difference between the performance
in ‘Same’ and ‘NoPix’ condition should quantify the relative
extent to which the network relied on shape-based and non-
shape features. We ran all of the simulations using the well-
known VGG-16 network (Simonyan & Zisserman, 2014) and
checked that our main results replicate for a deeper network,
ResNet-101 (He, Zhang, Ren, & Sun, 2016). To give the
model the best chance to recognise shape-based features, all
simulations were carried out on CNNs that had previously
been trained on ImageNet categories and replaced only the
fully-connected layers to perform the new classification task.
We then turned the learning rate to a small value and trained
these networks on the new classification task.

Methods

We used a method similar to Geirhos et al. (2017) to trans-
form images from the CIFAR-10 dataset. All transformations
were performed using the Pillow fork of the Python Imag-

2263

ing Library (https://pillow.readthedocs.io). Each
32x32 pixel image was rescaled to 224x224 pixels using the
PIL.Image.LANCZOS method. For the single-pixel mask, we
used 3-channel RGB images while for the salt-and-pepper
and additive noise mask, we transformed images to greyscale.
When images were transformed to greyscale, their contrast
was adjusted to 80% by scaling the value of each pixel using
the formula: 0.8 x v+ % x 128, where v was the original
value of the pixel in the range [0,255].

The salt-and-pepper mask was created by taking the trans-
formed greyscale image and setting each pixel to either black
or white with a probability p. When the mask was fixed for
a category (Experiment 1-3 below), all images had the ex-
act same set of pixels that were turned either black or white
and the p was set to 0.05. When the mask varied from im-
age to image within a category (Experiment 4 below), the
pixels were sampled independently for each image and the
probability p was fixed for each category but varied between
categories in the range [0.03,0.06].

The additive uniform noise mask was created by taking
the transformed greyscale image and adding a value sampled
from the uniform distribution [—w,w] to this image, where
2w was the width of the uniform distribution and was set to
8. When the noise mask was fixed, this sampling was done
only once per category and the same mask was added to each
image. When the mask was variable, it was sampled indepen-
dently for each image from a distribution [u—w, u~+w|, where
u was the mean that depended on the category and varied in
the range [—50,50].

The single pixel mask was created by choosing a random
location, (x,y), (sampled from a uniform distribution on the
interval [0,224]) on the image and changing the colour of the
pixel to a value ¢ (sampled from a uniform distribution on the
interval [0,255]). When the mask was fixed for each category,
(x,y,c) remained constant for all images in a category, but
varied between categories. When the mask was variable, each
of x,y and ¢ were sampled independently for each image from
a Gaussian distribution with a constant variance and a mean
that depended on the category of the image. If any value in a
sampled set of (x,y, c) values fell out of their respective range,
that value was re-sampled.

Simulations were carried out using either a 16-layer VGG
network (Simonyan & Zisserman, 2014) or 101-layer ResNet
network provided by the torchvision package of Pytorch.
These networks were either trained from the scratch on the
modified dataset or were first pre-trained on ImageNet and
then trained on the modified dataset. When the networks
were pre-trained, we replaced the fully-connected layers
of the VGG/Resnet pre-trained model with three/one fully-
connected layer(s) with 10 units (for 10 categories) on the
output layer. Since the results remain qualitatively the same,
we report the results for the networks pre-trained on Ima-
geNet. We tried a number of different optimization algo-
rithms, including RMSProp, SGD and Adam (Kingma & Ba,
2014). Results again remained qualitatively the same. We
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Figure 2: Accuracy on test images under the three types of noise-like masks shown in Figure 1. ‘Same’: the noise-like mask
has same properties for test and training images of each category; ‘Diff’: the properties of the mask during test are swapped
with another category from training; ‘NoPix’: No mask is inserted. The dashed (red) line indicates chance performance and
error bars show 95% confidence interval. Light and dark gray bars show accuracies on VGG-16 and ResNet-101.

started with a learning rate of le — 3 when training the net-
work from scratch and used a learning rate of le —5 when
fine-tuning a pre-trained network. In all cases, we used cross-
entropy as the loss function. The input to both types of net-
works was a 3-channel RGB image. For greyscale images, all
three channels were set to the same value.

Experiment 1

In the first experiment, all images in a category had the exact
same noise mask. For salt-and-pepper mask, this meant that
noise masks were sampled independently for each category,
but the same set of pixels in each image were modified for all
images in a category. Similarly, for the additive uniform noise
mask, the same mask was added to each image in a category.
For the single pixel noise, the location and colour of the added
pixel were independently sampled for each category, but kept
constant for all images in a category.

The results of the first experiment are shown in Figure 2.
We obtain the same pattern of results for all three cases:
when noise mask in the test images matches the noise mask
in training images, the model classifies images nearly per-
fectly; when noise masks are swapped, the accuracy drops
to zero; when the mask is completely removed, the categori-
sation accuracy is at chance. Furthermore, we get the same
pattern of results on both VGG and ResNet networks and ir-
respective of the type of regularisation used (we tried several
well-known regularisation methods including Batch Normal-
ization, Weight Decay or Dropout). These results clearly in-
dicate that the model learns to completely rely on features of
the noise-like mask, rather than any shape-related informa-
tion present in the images. Even in the extreme case, where
only one pixel amongst 50176 was diagnostic of the category,
the model prefers to classify based on this feature over other
shape-related features present in each image.

Experiment 2 & 3

One possible reason why humans prefer to rely on shape-
related features to categorise objects while CNNs do not is
that humans are guided by past experience and bring this past
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knowledge to new categorisation tasks. So when a human
sees an object with superimposed noise, they generalise from
past experience and look for shape-based information, paying
less attention to non-shape related features such as the noise-
like mask in above images. We conducted two further ex-
periments to test whether networks similarly generalise from
concurrent and past experience.

In Experiment 2, we divided the training set into two
subsets. The first subset (‘with pix’) contained three ran-
domly chosen categories from CIFAR-10 and, like above,
contained a category-correlated pixel in all images of these
categories. The second subset (‘unaltered’) contained the re-
maining seven categories from CIFAR-10 and was left unal-
tered — i.e. we did not add the category-correlated pixel to
images of this subset. We trained a VGG-16 network on all
ten categories at the same time. We were interested in finding
out whether the network generalised from one subset to an-
other and started using the features used to categorise images
in the ‘unaltered’ subset to images of the ‘with pix’ subset.
All other details of the experiment remain same as Experi-
ment 1.

The results from this experiment are shown in Figure 3a.
The model learnt to predict the images in the ‘unaltered” sub-
set with nearly 90% accuracy. However the performance on
the ‘with pix’ subset still completely depended on the loca-
tion and colour of the added pixel: accuracy was nearly 100%
when test images contained the pixel in the same location, but
dropped below chance when this pixel was removed. Thus,
the network did not seem to generalise the features (concur-
rently) learnt in the ‘unaltered’ categories to the categories
containing the diagnostic pixel.

In Experiment 3 we tested what happens when the network
is first trained on images that did not contain such a pixel (a
‘before’ phase) followed by a second (‘after’) phase in which
such a pixel was inserted in the training set. In the first phase,
a we trained a VGG-16 network on an unaltered CIFAR-10
training set. Once the network had learnt this task, we trained
it on the modified set of images in a second phase, introduc-



ing a predictive pixel in each category. So all that changes
between the ‘before’ and ‘after’ phases is the insertion of a
single category-correlated pixel to each image.
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Figure 3: Lack of generalisation. Accuracy under Same, Diff
and NoPix conditions for (a) two subsets: an ‘unaltered’ sub-
set where no noise-like mask was inserted in training images
and a ‘with pix’ subset where a single diagnostic pixel was
inserted, and (b) for two phases: a ‘before’ phase, where a
pre-trained VGG network was trained on images without any
noise masks and tested on the three conditions, and an ‘after’
phase, where the model from before phase was then trained
on images with a single diagnostic pixel.

We observed that (Figure 3b), instead of relying on past
experience with these images, the model learnt to completely
rely on the predictive pixel to perform categorisation — ac-
curacy dropped from nearly 100% to 0% between ‘Same’
and ‘Diff’ conditions. Crucially, the model completely forgot
about how to perform categorisation when the predictive pixel
was removed — accuracy was close to chance in the ‘NoPix’
condition during the ‘after’ phase. Thus learning about the
diagnostic feature seemed to be accompanied by unlearning
previously learnt representations. This, catastrophic forget-
ting, is a well-known problem in neural networks (McCloskey
& Cohen, 1989) and contrasts with how humans transfer their
knowledge from one task to another. Some recent solutions
to catastrophic learning in neural networks have been sug-
gested, such as Elastic Weight Consolidation (Kirkpatrick et
al., 2017) and it remains to be seen whether this can overcome
some of these problems.
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Experiment 4

The non-shape features used in the experiments above have
all been completely invariant from one image to another
within a category. It can be argued that these features are se-
lected by the model over other shape-based features because
they provide a very strong predictive signal. It is possible that
if these features contained larger variance, the model would
be more likely to rely on shape-based features while perform-
ing categorisation. In the next experiment, we introduced
variability in the non-shape features by sampling the noise-
like mask independently from a distribution for each train-
ing and test image within a category. In order to make these
noise-like masks diagnostic of an image’s category, a param-
eter of this distribution correlated with an image’s category.
For the salt-and-pepper noise, this meant that the probabil-
ity, p, of changing a pixel to black or white was different for
each category. Thus, the parameter, p, became diagnostic of
the category. However, the masks now varied from image to
image and were independently sampled with the (category-
dependent) probability, p. Similarly, for the additive uniform
noise, masks could vary from one image to other within a
category but the mean of the distribution depended on each
category (see Methods above for details). For the single di-
agnostic pixel, the inserted pixel could vary in location and
colour from one image to the other, but were generated from
a Gaussian distribution with a mean determined by the cat-
egory of the image and a fixed standard deviation. We ran
these simulations on both VGG-16 and Resnet-101 and aside
from the way in which the dataset was generated, all other
details remain same as Experiment 1.

The results of introducing a variable noise mask are shown
in Figure 4. Introducing variability in the location and colour
of the single diagnostic pixel brought very little change to the
VGG model’s behaviour (compare Figure 4c with Figure 2c¢).
Performance in the NoPix condition was somewhat better for
ResNet, however the pattern of result remained the same —
performance dropped substantially from the Same to NoPix
condition. Similarly, introducing variability in the salt-and-
pepper masks lead to only a minor change in behaviour of the
model, with accuracy in ‘Diff” condition dropping to chance,
rather than 0%. The most intriguing change in behaviour oc-
curred when variability was introduced to the additive uni-
form noise mask (Figure 4b). While the VGG and ResNet
networks differed quantitatively in these results, the pattern
of results remained the same: when the noise mask was
completely removed (NoPix condition) the model performed
worse than when the images contained a noise mask from a
different category (Diff condition). In other words, removing
the mask makes the image less informative for the model, not
only compared to images with the correct category-correlated
(Same) mask, but also compared to images with the incorrect
(Diff) mask — the model seems to rely on the presence of the
noise-like mask to make an inference.
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Figure 4: Accuracy on test images when the noise mask varies between images of a category. Training images contain (a)
salt-and-pepper noise, or (b) additive uniform noise, or (c) just one diagnostic pixel. The dashed (red) line indicates chance
performance. See Figure 2 for a description of the ‘Same’, ‘Diff” and ‘NoPix’ conditions.

Related Work

Su, Vargas, and Kouichi (2017) demonstrated that CNNs
trained on CIFAR-10 and ImageNet can be fooled by intro-
ducing a single adversarial pixel, with error rates of 68%
and 41%, respectively. Unlike our approach the model was
trained with uncorrupted images and the authors systemati-
cally searched for an adversarial pixel that lead to any sort
of error (so-called non-targeted attack). So, in contrast to our
goal, the goal of their study was not to explore whether CNNs
systematically learn non-spatial information. However, the
findings are in line with ours — the CNNs trained by them do
not seem to be categorising based on shape. Rather, it must
be that there was, by chance, some pixel value that was highly
correlated with a given output category and the model picked
up on this idiosyncratic correspondence. As a consequence,
when this pixel was added to another category the model was
fooled.

Two recent studies — Geirhos et al. (2018) and Baker, Lu,
Erlikhman, and Kellman (2018) — manipulate the texture and
shape of images independently and show that CNNs trained
on ImageNet are biased towards picking up texture compared
to shape. These results are again in line with our results and
show that CNNs will make inferences on whichever feature
is most predictive in the training set. Indeed, when Geirhos
et al. (2018) make the texture less diagnostic of category, the
model seems to use non-texture features for performing clas-
sification. Our findings go beyond past work by highlighting
the extent to which CNNs categorize objects on the basis of
non-shape features even when it is given concurrent or prior
training without such non-shape features. Indeed, a single di-
agnostic pixel can override all the shape information present
in the training images.

Conclusions

In a series of simulations we found that some high-
performance convolutional networks trained to categorise
CIFAR-10 images that included noise-like masks diagnos-
tic of the output categories often learned to categorise on
the basis of these masks rather than features present within
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the CIFAR-10 images themselves. Indeed, the models of-
ten entirely relied on the masks, and performed at floor when
the noise was removed from the images. This clearly high-
lights that, when a shape-bias is not present within the train-
ing dataset itself, these models do not show a shape-bias due
to their own architectural or algorithmic properties.

In our experiments, we specifically engineered our dataset
to contain invariant non-shape features. One might object
that large datasets like ImageNet and CIFAR-10 don’t con-
tain such features so that the models trained on these datasets
end up relying on shape to perform categorisation. But it is
well-known that popular datasets contain various biases due
to conditions under which the images were captured as well
as the different motivations for construction of the datasets
(Torralba & Efros, 2011). So biases like the one we engi-
neered may well be present in these datasets and networks
trained on these datasets may be picking on these features.
This, in turn, implies that these networks may be relying on
entirely different set of features and representations to per-
form classification than human beings or other animals.

If CNNs do indeed rely too heavily on non-shape features
present within datasets, it could also be the source of various
idiosyncratic behaviours such as being confounded by fool-
ing images (Nguyen et al., 2015) or being overly sensitive to
colour (Hosseini et al., 2017), noise (Geirhos et al., 2017) or
even single pixels in images (Su et al., 2017). The alternative
hypothesis that the human visual system learns to categorize
objects on whatever statistical regularities are strongest in the
input cannot be ruled out on the basis of our findings, but it
would predict that humans would show a similar pattern of
result to these models, such as picking up on single pixels or
noise-like masks to categorise stimuli. In addition, this view
also needs to explain why human beings are not susceptible
to adversarial attacks such as the non-shape fooling images in
the same manner as vanilla CNNs. We are currently carrying
modelling and behavioural work to provide further insights
into the computational benefits of inducing a shape-bias to
CNNs and how these modified CNNss relate to human vision.
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