Towards Reduced Order Modeling (ROM) for Gust Simulations

S. Görtz, M. Ripepi
DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany

Deutscher Luft- und Raumfahrtkongress 2017
5.-7. September 2017
München
Outline

1. Motivation and objectives

2. Reduced-Order Modeling (ROM) for unsteady nonlinear aerodynamics
 - Unsteady Least-Squares-ROM approach
 - Offline training: building the subspace
 - Online predictions
 - Accelerated greedy missing point estimation (MPE) procedure
 - Results for 2D and 3D test case

3. Summary and outlook
Motivation

- From design to certification of an aircraft many aerodynamic data are needed – for the entire flight envelope –
- **Aerodynamic data** \rightarrow pressure and shear stress distribution on the aircraft surface, from steady and unsteady simulations
Objective

Goal: based on high-fidelity CFD data, provide predictions of the aerodynamics with lower evaluation time and storage than the original CFD model.

To reduce computational complexity, physics-based ROMs based on hi-fi training data to be used instead of CFD for rapid many queries predictions (maneuver & gust loads).

Solution($p_1, p_2, ...$)?

- ROMs for compressible flows
- Structural design and sizing
- MDAO

Aerodynamic design

Result!

(here: real time!)
Reduced-Order Modeling (ROM) procedure

Collecting snapshots coming from an unsteady simulation → variation in the local effective angle of attack

- Boundary conditions disturbances
- Motion (forced or induced)
- Gust perturbations (here: rigid aircraft, no motion)
Nonlinear unsteady LSQ-ROM approach

Semi-discrete unsteady Navier-Stokes Eqs.
\[\hat{\mathbf{R}} \overset{\text{def}}{=} \mathbf{R}(\mathbf{w}(t)) + \Omega \frac{\partial \mathbf{w}(t)}{\partial t} = 0 \in \mathbb{R}^N \]
\(\Omega: \) cell volumes

Search for an approximated solution \(\mathbf{w} = [\rho, \rho \mathbf{v}, \rho E^t, v_t] \in \mathbb{R}^N \)
- in the POD subspace \(\mathbf{U}_r \in \mathbb{R}^{N \times r}, r \ll N \)
- minimizing the unsteady residual in the \(L_2 \) norm

\[\mathbf{w} \approx \sum_{i=1}^{r} a_i \mathbf{U}^i + \bar{\mathbf{w}} = \mathbf{U}_r \mathbf{a} + \bar{\mathbf{w}} \]
\(\mathbf{a}: \) vector of the unknown coefficients \(a_i \)
\(\bar{\mathbf{w}}: \) mean of the snapshots set

\[\min_{\mathbf{a}} \| \hat{\mathbf{R}}(\mathbf{U}_r \mathbf{a} + \bar{\mathbf{w}}) \|_{L_2}^2 \]

nonlinear least squares problem, solved with parallel Levenberg-Marquart alg.

Physics-based approach
2D Test Case: NACA airfoil

- TAU RANS eq., Spalart-Allmaras turbulence model
- Mach = 0.8, Re = 7.5 10^6
- Training maneuvers exciting up to $k \leq 0.2$
- Predict aero loads for periodic motions at different frequencies and amplitudes (using the same ROM)

Training maneuvers

- Schroeder multisine with $0.01 < k < 0.2$
- Linear chirp signal with $k_{\text{max}} = 0.2$
2D Test Case: NACA airfoil
Periodic pitching motion prediction at different oscillation frequencies k

ROM built with 50 POD modes
2D Test Case: NACA airfoil
Periodic pitching motion prediction at different oscillation amplitudes α_A

ROM built with 50 POD modes
Curse of dimensionality for ROMs of nonlinear systems

I. compute the approx. solution

\[w(t) \approx Ua(t) + \bar{w} \Rightarrow O(Nr) \]

II. evaluate the unsteady residual with TAU

\[\tilde{R}(w(t)) \overset{\text{def}}{=} R(w(t)) + \Omega \frac{\partial w(t)}{\partial t} \Rightarrow O(N) \]

III. solve the LSQ problem

\[
(J^T J + \lambda I) \Delta a = -J^T \tilde{R}
\]

\[\Rightarrow O(Nr) \]

- Jacobian Matrix \(J \in \mathbb{R}^{N \times r} \)
 - \(N \): order of CFD model (variables x nodes)
 - \(r \): order of the ROM (i.e. number of POD modes)

The computational cost scales linearly with the dimension \(N \) of the full order model. No significant speedup can be expected when solving the minimum residual ROM.
Hyper-reduction approaches

Complexity reduction by sampling (or compute only a few entries of) the nonlinear unsteady residual vector $\hat{\mathbf{R}}$

Collocation
- omission of many components
- non intrusive

Reconstruction
- approximation of the entire vector, by interpolation or by least-squares projection onto a subspace $\mathbf{V} = \mathbf{U}(\mathbf{U}^T \mathbf{P} \mathbf{P}^T \mathbf{U})^{-1} \mathbf{U}^T \mathbf{P}$

Selecting the subset indices \rightarrow
- initialize with (Discrete) Empirical Interpolation Method
- select add. points with greedy Missing Point Estimation

- The complete nonlinear unsteady residual vector $\hat{\mathbf{R}}$ is evaluated,
- but only a small subset of its entries are used in the minimization process

Greedy: minimize
$$\|\mathbf{U}(\mathbf{U}^T \mathbf{P} \mathbf{P}^T \mathbf{U})^{-1} \mathbf{U}^T \mathbf{P} \mathbf{P}^T\| = 1/\sigma_{\min}(\mathbf{P}^T \mathbf{U})$$
Exhaustive greedy missing point estimation procedure

Greedy point selection algorithms minimize an error indicator by sequentially looping over all entries → costly ⇒ \(\mathcal{O}(N^{r^3}) \)

Exhaustive greedy MPE for maximizing \(\sigma_{\text{min}}(P_{s+1}^T U) \)

Input:
- \(U \in \mathbb{R}^{N \times r} \): basis of a \(r \)-dim subspace,
- \(J_s \in \mathbb{R}^{s \times 1} \): index set,
- \(P_s \in \mathbb{R}^{N \times s} \): mask matrix with \(s \) indices, where \(s \geq r \).

1. \(\sigma_{\text{opt}} = 0, \bar{J}_s = \{1, ..., N\} \setminus J_s \)
2. for \(j \in \bar{J}_s \) do
3. \(\bar{P} = (P_s, e_j) \in \mathbb{R}^{N \times (s+1)} \)
4. Compute \(\sigma_{\text{min}}(\bar{P}^T U) \)
5. if \(\sigma_j > \sigma_{\text{opt}} \) then
6. \(\sigma_{\text{opt}} = \sigma_j, j_{\text{opt}} = j \)

Output: next index \(J_{s+1} = J_s \cup \{j_{\text{opt}}\}, P_{s+1}^T = [P_s, e_{j_{\text{opt}}} \]
Accelerated greedy MPE with rank-1 SVD update

Using an (additional) rank-1 SVD update within the iterative greedy step to further accelerate the selection of the grid nodes.

Computational cost
- Alg. Ref. [1]: $\mathcal{O}(N r^2 s + r^3 s)$
- Rank-1 SVD update: $\mathcal{O}(N r^2 s + r^3 s)$

- N: order of CFD model (variables x nodes)
- r: order of the ROM (i.e. number of POD modes)
- $s (> r)$: number of MPE selected nodes

Maneuver about the steady state LANN wing, $\text{Mach} = 0.82$, $\text{Re} = 7.17 \times 10^6$

LANN wing test case
- 0.47 Mi grid nodes
- 23 POD modes
- 6 cores

Wall-clock time [h]
- Alg. Ref. [1]
- Rank-1 SVD update

selected nodes / # total nodes [%]
Unsteady loads prediction for the LANN wing

Online Performances

- **ROM (10 cores)**
 - w/o MPE: 25 h 50 min
 - with MPE: 2 h 44 min

Offline Performances (10 cores)

- Compute snapshots: 4d 10h 40min
- POD ROM building: ~5 min
- Fast greedy MPE: ~6 min

Average Wall Time

- Total: 25 h 50 min, 2 h 44 min, 1 h 29 min
- Per time step: ~16 min, 1 min 36 s, 36 s
- Speed-up**: 1, 9.5, 26.7

Chart 17

TAU

MINRES ROM - 18 PODM

MPE ROM - 5000 nodes

Mach = 0.82, Re = 7.17 \times 10^6

[Image of a graph showing lift and moment coefficients over time with annotations for performance metrics.]
Unsteady ROM prediction assessment for a full aircraft

- TAU, RANS equations with SA-neg turbulence model
- $V_\infty = 246$ m/s, Mach = 0.83, $Re = 6.5 \times 10^6$
- Linear chirp training maneuver exciting up to $k_{max} = 3$:
 \[
 \alpha(\tau) = 2.0164^\circ + 2.3266 \sin(k \tau)
 \]
 with $k(\tau) = k_{max} \frac{c_r}{V_\infty} \tau$
- Predicted (1-cos)-like pitching oscillation at $k = 0.33$

CFD setting (TAU code)
- Dual time stepping
- Min residual: $1e-6$
- Max inner iterations per time step: 5000
- Physical time steps: 550
- Linearly distributed time steps

ROM settings (SMARTy)
Truncation of the POD modes to 99.999% of their energy content (~100 modes)
Unsteady ROM prediction assessment for a full aircraft

Training maneuver
Chirp pitching oscillation up to reduced frequency $k=3$

Predicted maneuver
(1-cos)–gust like pitching oscillation

Offline: one training maneuver

Online: many ROM predictions possible

- Mach=0.83, Re=6.5 \(10^6\)

$w_g = 10 \text{ m/s}$

$\Delta \alpha \approx 2.3^\circ$

$V_\infty = 246 \text{ m/s}$

ROM run-time (48 cores): 1.3 h
Speed-up: 2.3 (w/o MPE procedure! w/o MKL! FSDM in developer mode)
Unsteady ROM prediction assessment for a full aircraft

Time step @ max C-lift

(1-cos) gust-like pitch oscillation

- Mach=0.83
- Re=6.5 10^6
Unsteady ROM prediction assessment for a full aircraft

- Mach=0.83, Re=6.5 10^6
Unsteady ROM: accelerated greedy MPE

- minimize a subset of the unsteady residual in the L_2 norm
- greedy missing point estimation (MPE) procedure to select the subset
- greedy nodes maximise the "information content" of the POD subspace

Goal: Reduced online cost

Grid
- N° nodes: 3.8 Mi

Rank-1 SVD update
- Greedy MPE
- N° nodes: 0.38 Mi
 (10% of total nodes)

Potential speed-up by using Intel® Math Kernel Library (MKL)
Summary

The use of CFD-based Reduced Order Models has been demonstrated for unsteady aerodynamics, maneuvers and gusts:

- 😃 accurate predictions can be achieved with a proper training snapshot set
- 😞 the selection of the submesh is currently still too expensive (but offline)
- 😞 the achieved speed-up is not yet fully satisfactory (w/o MPE, w/o MKL)
Outlook

- Next: discrete gusts, elastic a/c, parametric a/c
- Include the greedy MPE selection in the ROM prediction for the full aircraft
- Investigate divide-and-conquer algorithm and coarse-grid residual evaluation as an alternative to greedy algorithm
- Apply the nonlinear unsteady least-squares ROM approach to discrete gusts
- What is the best training maneuver? → **ROM challenge** …
- Investigate alternatives to POD (DMD, isomap, clustering, …) for unsteady ROMs
- Consider interpolation-based approaches instead of residual minimization?!

NEVER FORGET THE PHYSICS
Nathan Kutz, Washington Uni
Acknowledgements

Acknowledgement to the EU (Grant agreement article 38.1.2):
- Part of the research leading to this work was supported by the AEROGUST project, funded by the European Commission under grant number 636053.

Internal DLR Projects
- DLR multidisciplinary projects Digital-X and VicToria

Collaboration with Ralf Zimmermann
- SDU, Department of Mathematics and Computer Science (IMADA), Odense, Denmark