VALEOL

Eighteen Month Review Meeting
24th - 25th November 2016, DLR - Göttingen

Presented by Claire Taymans
Summary

WP 2
Task: Investigation of predicted non-linear behaviour of wind turbine blades submitted to gust using incompressible flow model and overset Cartesian/Bodyfitted grids
Overall aim:
• 3D incompressible Navier-Stokes parallel solver with overset Octree/Bodyfitted grids

What we have now:
• 2D sequential Navier-Stokes solver with overset Cartesian/Bodyfitted grids
• 2D Quadtree grid with parallel Navier-Stokes solver
• 3D Octree grid in progress

WP 4
Task: Collection of in-service wind turbine data
• Specifications of data has been defined
• Technical solutions for wind blade instrumentation have been chosen
• Plot for meteorological mast (= met mast) and wind turbine in the plant have been chosen
2D Parallel Laplacian Solver with Quadtree grid

- A 2D parallel Laplacian solver that deals with quadtree grids has been implemented with finite volume method.

- If we have a gap in refinement level: diamond’s method is used:
 \[
 \vec{\nabla} \Phi \cdot \vec{t}_C = \frac{\Phi_{out} - \Phi_{in}}{\Delta_C} \\
 \vec{\nabla} \Phi \cdot \vec{t}_{bt} = \frac{\Phi_{t} - \Phi_{b}}{\Delta_L}
 \]

- Comparison with analytic solution:
2D Parallel Navier-Stokes Solver with Quadtree grid

- A 2D parallel Navier-Stokes solver has been implemented with finite volume semi-Lagrangian scheme.

- Semi-Lagrangian scheme uses an Eulerian framework but the discrete equation come from the Lagrangian perspective.

\[
\frac{dx}{dt} = u
\]

- Avoids the direct computation of the convective terms.
- Interpolation is used to get velocity at the root of the characteristic.

- Implementation of Taylor-Green vortex which has an exact solution of incompressible Navier-Stokes equations.

- Computation of gradients at cell-centre with bilinear interpolation when a gap in refinement level occurs.

 - Significant errors at gap occurred.
 - Use of 3 or 4 neighbours wasn’t enough to get an order of convergence of 2 in space.
2D Parallel Navier-Stokes Solver with Quadtree grid

- Computation of gradients with Moving Least Squares method
 - Use of all nearest neighbours
 - Computation of gradients and Hessian directly at cell centre
 - Errors at gap still occurs but we obtain the best possible with nearest neighbours

- Order of convergence in space of the Navier-Sokes solver

\[
\begin{pmatrix}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y} \\
\frac{\partial^2 u}{\partial x^2} \\
\frac{\partial^2 u}{\partial y^2} \\
\frac{\partial^2 u}{\partial x \partial y}
\end{pmatrix} = A^{-1} B
\]

Figure: U Velocity in the computation domain with quadtree mesh
Specifications for wind data

- Wind data is used as an incoming boundary condition
- 50 m height met mast with wind sensors every 5 m from 25 m height (bottom of blade) to 50 m
- Extrapolation of wind measurement in accordance with IEC Standard after 50 m
- Measurement every 10 min of wind velocity, wind direction and wind turbulence
- Position of met mast should be between 2D and 4D (D = diameter of wind turbine) in front of the wind turbine (in direction of main wind)
Specifications for blade data

- Pressure measures
 - In order to compare with simulations
 - Several points equitably distributed along blade length

- Strain measures
 - Longitudinal measures at blade root to check the beam model
 - Longitudinal measures equitably distributed along blade length

- Position of blade
 - In order to correlate a blade measure with a wind data

- Sampling of 1s to get enough point for each wind condition

- Synchronization between all measures

- Minimum impact on the blade is required!

→ Valeol looked for a technological solution with sensors supplying, communication system to get data back and installation
Explanation of technological solution

- Optical fibre along wind blade that will connect sensors to an inquiry system located on the rotor
- 10 strain gauges and 6 pressure sensors with Fiber Bragg Grating technology
- Position definitions in progress
 - 4 strain gauges on blade root every 90°
 - 4 strain gauges at 1/3 of blade length
 - 2 strain gauges at 2/3 of blade length
 - 6 pressure sensors equitably distributed (4 on pressure side)
Progress on WP 4

- In accordance with owner of wind plant, constraints on plots for met mast: Wind turbine n°5 has been chosen and plot identified

- The owner and farmer of the plot agreed with the project of putting a met mast

- A permit is needed to put a met mast so a file has been built and submitted to the city council
 - Explanation of the building
 - Plans and positions
 - Consultation of civil and military aviation
 - Authorizations of owner and farmer ...

→ 2.5 months for examination period

- Technological solution has been chosen

- With constraints for examination of administrative file and design by sensor supplier: installation in February 2017
Future Work

WP 2
- Navier-Stokes parallel solver in 3D on Octree mesh
- Implementation of Navier-Stokes solver on Overset Octree/Bodyfitted grids

WP 4
- Validation of quote for technological solution
- Define the exact position of pressure sensors and preparation of installation procedure
- Inspection of the blade prior to the instrumentation