Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft

SciTech, 8th-12th January 2018
Kissimmee, Florida

Robert Cook, Chris Wales, Ann Gaitonde, Dorian Jones and Jonathan Cooper
• Introduction
 • The AeroGust project
 • Motivation

• Background
 • Nonlinear Aeroelastic Formulation
 • Gust Loads Process
 • Uncertainty Quantification – Polynomial Chaos Techniques

• Results
 • Test Case
 • PCE Convergence Studies
 • Static Results
 • Dynamic Gust Loads

• Conclusions and Further Work
The *AeroGust* Project

- EU funded Horizon 2020 project
 - Collaboration between industry and academia
- Inspiration from Flight Path 2050
 - Maintaining and extending industrial leadership

Background

- Market trend for adoption of more flexible structures, novel design configurations and higher flight speeds
 - Pushing limits of linear analyses
- Process relies on wind tunnel data from predicted cruise geometry
 - Gust loads considered relatively late in design procedure – design space limited
- Extension of aerospace technologies to wind turbine design
• University of Bristol
• Institut National De Recherche En Informatique Et En Automatique (INRIA)
• Stichting Nationaal Lucht - En Ruimtevaartlaboratorium (NLR)
• Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
• University of Cape Town
• Numerical Mechanics Applications International SA (NUMECA)
• Optimad engineering s.r.l.
• University of Liverpool
• Airbus Defence and Space
• Dassault Aviation SA
• Piaggio Aero Industries SPA
• Valeol SAS
Motivation for this Work

• Understanding what effect structural nonlinearities have on aircraft loads compared to the traditional, industrial approach
 • Particular focus on next-gen HARW
 • Large deformations

• Develop a rapid nonlinear gust loads process for analysis of HARW
 • Subject to atypical gust excitations
 • Use this gust loads process to perform uncertainty quantification
Background
Nonlinear Aeroelastic Framework
Nonlinear Aeroelastic Framework

- Free-free geometrically-exact nonlinear beam code based on Hodges’ intrinsic beam formulation
 - Linear strain-curvature/force-moment relationship
 - Large beam deformations and rotations captured

\[
\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \dot{V} \\ \Omega \end{bmatrix} + \begin{bmatrix} \dot{\Omega} \\ 0 \end{bmatrix} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} V \\ \Omega \end{bmatrix} = \begin{bmatrix} F' \\ M' \end{bmatrix} - \begin{bmatrix} \dot{F} \\ \dot{M} \end{bmatrix} + \begin{bmatrix} C \end{bmatrix} \left(\begin{bmatrix} F + e_f \\ M \end{bmatrix} \right) + \begin{bmatrix} f \\ m \end{bmatrix}
\]

- Additional equation required to satisfy free-free conditions
 - Free-free velocity couples with second equation above
 - Allows for arbitrarily large rigid body rotations
 - Linear finite-elements are used to solve the structural EOM
 - Positions and orientations are obtained by integrating strains/curvatures along the beam, or, velocities with time (parameterising rotations using quaternions
Nonlinear Aeroelastic Framework

- Aerodynamics from modified unsteady strip theory
 - Leishman’s indicial response method for unsteady effects (compressibility effects ignored)
 - Spanwise lift distribution from VLM
 - Sectional AoA related to beam motion
 - Linear relationship between AoA and lift (no stall)

- Static coupled nonlinear structural and aerodynamics equations solved using Newton-Raphson method

- Dynamic solution obtained using Newmark-β time-stepping solver

- Code verified against Nastran, other UoB codes, UCT, UMich, UoC
Gust Loads Process
Gust Loads Process for NL Aeroelastics

- Industrial gust loads process can no longer be used for NL system
- Large deformations may lead to RTC gusts exceeding a purely vertical or lateral gust
 - RTC gusts cannot be calculated directly for NL system
- Atypical gusts should also be included (oblique gusts)
Gust Loads Process for NL Aeroelastics

- Oblique gusts add an effective delay and asymmetry to the loading
- Future work could consider other type of gust excitation
Gust Loads Process for NL Aeroelastic:

- Potentially huge numbers of simulations required to cover all gust excitation parameters for NL system – especially if considering atypical gusts.
- Linearisation of aeroelastic equations gives good qualitative comparison to NL.
- Monte Carlo simulations of possible gust excitation parameters on the linear system are used, combined with neural network surrogate models:
 - Map from gust parameters to max/min loads
 - Use NN to find worst case gust excitation.
Identifying worst case gusts

- NN fitted to MCS of linearised system
- Gust case which results in largest loads determined

- Worst gust cases determined for all loads directions for all wing elements
- Subset of cases determined from whole problem space
 - RTC gust angle calculated as post-process
Uncertainty Quantification
Uncertainty Quantification Methods

• Gust loads process can be expressed as a black-box-type “block”

\[Y = f(X) \]

• Aim of UQ is to determine how uncertainties in input variables propagate through the mapping
• MCS could be considered, but results in an unfeasibly large number of simulations
• Polynomial chaos expansion methods are used to reduce number of simulations
 • Fitting Hermite polynomials to samples of data reduces number of simulations required
Uncertainty Quantification

- Need to define what system inputs are uncertain
 - Environmental uncertainties (air density, temperature, etc.)
 - Aircraft property uncertainties (stiffness properties, mass properties, etc.)
 - Gust inputs themselves are assumed to be the known, EASA/FAA regulation deterministic input gusts

- Need to define reasonable input PDFs for the uncertain variables
 - Little information found in literature for what values to use
 - Initial results use a normal distribution with 3σ limits at ±10% of the mean values

- Young’s modulus (and shear modulus) will be considered to be uncertain in this work
Test Case
HARW Test Case

- HARW baseline structure sized on static manoeuvres
 - Inspired by similar size/AR aircraft considered in research
- Stiffness properties obtained from wing box sections
 - Thicknesses determined to minimise weight while not exceeding stress limits
- One flight and mass case considered
 - Mach 0.7 10,000m altitude
 - Half fuel mass case (69,400kg)

<table>
<thead>
<tr>
<th></th>
<th>Wing</th>
<th>HTP</th>
<th>VTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{4}) Chord Sweep (°)</td>
<td>12</td>
<td>20.6</td>
<td>20.6</td>
</tr>
<tr>
<td>Taper Ratio</td>
<td>0.25</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Dihedral (°)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surface Area (m(^2))</td>
<td>130</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>18</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Root Thickness-Chord Ratio</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Tip Thickness-Chord Ratio</td>
<td>0.11</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Results
PCE Convergence Study
Convergence Studies

- Monte Carlo based methods are commonly used to verify what PCE order and number of samples is appropriate
 - A minimum number of samples is known
- Gust loads process too expensive to carry out with a MCS
 - Even considering the efficient method presented here
- Consideration of a single gust length is feasible to carry out a MCS for verification purposes
- 1,000 simulations on the same gust length are run with varying Young’s modulus
 - Loads time histories are enveloped
 - Considered to provide the ‘true’ statistical output properties
PCE Convergence Study – PCE Order Study

Some PDFs predicted well by 1st order PCE. Root in-plane shear and bending are highly skewed – require a higher order.
PCE Convergence Study – Number of Samples

3rd order PCE are selected with various sample numbers. 10 samples and higher are sufficient to predict most skewed distributions.
Static Results
Trim Results – Wing Deflections

- Wing deflections plotted, accompanied by a shaded area encompassing 99.7% ($\approx 3\sigma$) of the results
- Tip deflection <10% span
 - Linear regime
- Tip deflection uncertainties vary by roughly 10% of the mean value
Trim Results – Angle of Attack Distribution

- Local AoA distribution plotted, accompanied by a shaded area encompassing 99.7% ($\approx 3\sigma$) of the results
- Highest uncertainty for AoA at the root and tip of the wing
- At around 12m span, a point is seen with low uncertainty
 - Corresponds with rigid trim AoA
Trim Results – Loads Distributions

Highest uncertainty in axial loads
Dynamic Results
Dynamic Results – Nonlinear Gust Loads

Surrogate-based gust loads process envelopes exceeds traditional method. Significant uncertainty seen in axial, but also in in-plane shear for surrogate-based approach.
Dynamic Results – Nonlinear Gust Loads
Conclusions

• Efficient gust loads process for NL system presented which includes atypical gust excitations, and used in a UQ analysis

• Uncertainties in geometric IQs are affected by changes in Young’s modulus more than those of loads
 • Axial loads affected more prominently due to strong link to geometry of the deformed wing

• Loads envelopes with atypical gust excitation included shown to exceed ‘traditional’ approach
 • Additional parameterisations can be carried out instead

Future Work

• Extend the study to additional types of gust excitations
 • Spanwise distributions – DARPA-type gust

• Additional uncertain inputs

• Look at more flexible aircraft types
The research leading to this work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 636053.
Efficient Modelling of a Nonlinear Gust Loads Process for Uncertainty Quantification of Highly Flexible Aircraft

SciTech, 8th-12th January 2018
Kissimmee, Florida

Robert Cook, Chris Wales, Ann Gaitonde, Dorian Jones and Jonathan Cooper