A Kriging Based Corrected Potential Flow ROM for Gust Load Calculations

Roy A. D. Horwitz, William Liw Tat Man, Arnaud G. Malan, and James Braithwaite
University of Cape Town

AVIATION, 25–29 June 2018

Hyatt Regency Atlanta, Atlanta, Georgia
Overview

1. Introduction
2. Modelling Approach
3. Fluid Structure Interface
4. Reduced Order Model
5. Test Cases
6. Conclusion
1. Introduction

- Interest in non-linear aeroelasticity continues to grow
- There is a need for efficient modelling solutions
- A wide range of theory has been applied to the problem

- An aeroelastic ROM methodology for gust loads has been developed
 - Correct potential flow results with Kriging\cite{oliver90} models
 - Kriging models supply loads to the structural model
 - Create a range in which predictions are reliable

1. Introduction: Gust Definition

- Standardized 1 – cosine waveform gust:

\[U = \frac{U_a}{2} \left[1 - \cos \left(\frac{\pi l}{H} \right) \right] \]

- Definition as per FAA and EASA regulations
2. Modelling Approach: Fluid

- Full order model – ALE Euler equations
- Gusts application: Split Velocity Method\(^2\)
- Spatial discretisation: MUSCL scheme\(^3\) with the Roe solver\(^4\)
- Temporal integration: Dual time stepping\(^5\)

2. Modelling Approach: Fluid

- Reduced order model – Incompressible potential flow
- Unsteady vortex panel method\(^6\) (UVPM)
- Simulate specific 2D sections along the wing

2. Modelling Approach: Structure

- Linearised governing equation:
 \[M \cdot \ddot{x} + C \cdot \dot{x} + K \cdot x = f \]
- Temporal integration: Newmark’s Method \([7]\)

- Investigate two structures:
 1. FFAST Crank aerofoil\([8]\) (2D)
 2. NASA Common Research Model\([9]\) (3D)

3. Fluid Structure Interface (FSI)

- Facilitates coupling of fluid and structure in 3D
- Performs two key functions
 1. Decomposes surface forces onto the beam
 2. Reconstructs the wing surface
- Requires a mapping between surface nodes and beam elements
3. FSI: Mapping

- Split the wing into sections based on the underlying beam elements
- Surface nodes in a section are mapped to the corresponding beam element
3. FSI: Force Decomposition

- Method of McGuire, et. al.\cite{McGuire2000} is used to decompose forces
- Split the surface forces into equivalent force-moment pairs
- Apply force-moment pairs at beam nodes

\[f_{\text{aero}} \]
\[f_L \]
\[f_R \]
\[m_L \]
\[m_R \]

3. FSI: Surface Reconstruction

- Cubic splines are fitted through the deformed beam nodes
- The surface is reconstructed around the splines such that
 1. cross-sections are preserved and orthogonal to the spline
 2. twist about the beam axis is accounted for
3. FSI: Surface Reconstruction
4. Reduced Order Model

- Multiple UVPM simulations linked to Kriging models of forces and moments
 - UVPM simulations provide a physical basis
 - Kriging models “correct” the UVPM load estimates

- Interpolate results between two bounding cases
 - Increases training cost
 - Creates a range where predictions are reliable
4. Reduced Order Model

\[\begin{align*}
&U \\
&\text{with Gust} \\
&\text{without Gust} \\
&\text{with Gust} \\
&\text{with Gust} \\
&\text{with Gust} \\
\end{align*} \]
4. ROM: UVPMs

- Multiple sections along the wing
- Two UVPMs per section
 - Only one “sees” the gust
 - Both follow the beam
- The focus is on characterizing the load distribution
- Provide force coefficients to the Kriging models
4. ROM: Kriging Models

- Six individual models (one per force/moment)
- All models take the same inputs:
 1. Nodal initial position, current displacement and velocity
 2. All force coefficients

- Models give force as function of beam length

$$ q = g\left(l_i, x_i, \dot{x}_i, \bar{C}_L, \bar{C}_M, \bar{C}_D, \bar{C}_L^{ng}, \bar{C}_M^{ng}, \bar{C}_D^{ng}\right) $$
4. ROM: Training

1. Collect training data
 - Select two gust cases
 - Simulate both with the full order model
 - Simulate both with the UVPMs (prescribed motion)
4. ROM: Training

2. Train each model Kriging model separately
 • Select an initial set evenly from both cases
 • Iteratively add training points where error is worst
 • Repeat until error tolerances are met
5. Test Cases

• Investigate two structures
 1. FFAST Crank aerofoil – 2D
 2. NASA Common Research Model (CRM) – 3D

• FFAST Crank investigation is complete
 • Uses a simplified ROM

• CRM investigation is incomplete
 • Full order simulations complete
 • Currently training Kriging models
5. Test Cases: FFAST Model

- Flight conditions:

<table>
<thead>
<tr>
<th>Altitude z (m)</th>
<th>Density ρ_∞ (kg.m$^{-3}$)</th>
<th>Pressure P_∞ (kPa)</th>
<th>Mach number M_∞</th>
<th>Flow velocity U_∞ (m.s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10668</td>
<td>0.3806</td>
<td>23.92</td>
<td>0.86</td>
<td>255.1</td>
</tr>
</tbody>
</table>

- Structure: Pitch-Plunge FFAST crank aerofoil (8m chord)
5. Test Cases: FFAST Training

• Gust selection:

<table>
<thead>
<tr>
<th>Gust Half Length (ft)</th>
<th>Gust Amplitude (m)</th>
<th>Gust Amplitude (m.s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>21.336</td>
<td>17.49</td>
</tr>
<tr>
<td>150</td>
<td>45.720</td>
<td>19.85</td>
</tr>
<tr>
<td>250</td>
<td>76.200</td>
<td>21.61</td>
</tr>
<tr>
<td>350</td>
<td>106.680</td>
<td>22.86</td>
</tr>
</tbody>
</table>

• Error tolerances: 0.1% mean error and 0.5% peak error
• Training set sizes: 200 data points
5. Test Cases: FFAST Results (150 ft)
5. Test Cases: FFAST Results (250 ft)
5. Test Cases: FFAST Results (Error)

| Test Case | Gust half length H (ft) | Absolute maximum $|\epsilon|$ (% abs. max.) |
|-----------|---------------------------|--|
| Plunge | 150 | 0.481 m |
| | 250 | 0.583 m |
| Pitch | 150 | 2.99° |
| | 250 | 3.76° |
5. Test Cases: FFAST Computational Cost

- Per run costs:
 - CFD – 90 CPU hours each (1.0 unit)
 - ROM – 2.3 CPU hours each (0.026 unit)
 - Speed up factor – 39

- Total costs (incl. training):
 - 4 CFD runs: 360 CPU hours (4.0 units)
 - 2 CFD runs + 2 ROM runs: 185 CPU hours (2.055 units)
 - Cost Reduction – 49%
5. Test Cases: CRM Model

- Flight conditions:

<table>
<thead>
<tr>
<th>Altitude (z (m))</th>
<th>Density ρ_∞ (kg.m$^{-3}$)</th>
<th>Pressure P_∞ (kPa)</th>
<th>Mach number M_∞</th>
<th>Flow velocity U_∞ (m.s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9142</td>
<td>0.4593</td>
<td>30.17</td>
<td>0.86</td>
<td>260.8</td>
</tr>
</tbody>
</table>

- Structure: Condensed MTOW FERMAT FEM Model \cite{Klimmek2014, Wales2017}

- Gust Selection:

<table>
<thead>
<tr>
<th>Gust Half Length (ft)</th>
<th>Gust Amplitude (m)</th>
<th>Gust Amplitude (m.s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>9.114</td>
<td>11.26</td>
</tr>
<tr>
<td>150</td>
<td>45.720</td>
<td>14.72</td>
</tr>
<tr>
<td>350</td>
<td>106.680</td>
<td>16.96</td>
</tr>
</tbody>
</table>

5. Test Cases: CRM Results (30 ft)
5. Test Cases: CRM Results (30 ft)
5. Test Cases: CRM Results (350 ft)
5. Test Cases: CRM Results (350 ft)
6. Conclusion

- A novel ROM strategy has been proposed
- The 2D ROM showed good accuracy and substantial speed-up
 - Worst mean and maximum errors of 1.9% and 8.1%
 - Reduced overall cost by 49%
- There is still a need for 3D validation
- Despite this, the approach appears viable
The research leading to this work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 636053.