Using geographically weighted regression to explore spatial variation in survey behaviour

Kaisa Lahtinen
Chris Brunsdon
Sarah Butt
Aims

• Discovering any evidence of spatial variation in response behaviour in social surveys

• Exploring whether geographically weighed regression can be used to discover these relationships further
Background to nonresponse research

• Decline in the response rates
• Nonresponse a joint outcome of individual and neighbourhood characteristics
• Nonresponse rates have been found to vary geographically
• But little existing research into whether the drivers of nonresponse would also vary spatially
Data

• Using European Social Survey (ESS)
 • Nationally representative
 • Response rate 53%
 • N = 4520
Data

• Using European Social Survey (ESS)
 • Nationally representative
 • Response rate 53%
 • N = 4520

• A set of theory driven control variables
 • ESS interviewer observations: living in a flat
 • Census 2011 data at LSOA level: population density, ethnic heterogeneity, rate of owner occupancy, proportion unemployed, proportion of 16 to 24 year olds
 • Recorded crime figures on violent crime at LA level
Methods

• Evidence for any spatial variation
 • Logistic regression
 • Introducing geographical constraints step by step
 • Model 1 – Baseline (global) model assuming no geographic effect
 • Model 2 – Global model including regional (NUTS1) dummies i.e. allowing for geographic variation but independent of other predictors.
 • Model 3 – Global model including interactions between region and other predictors.

• Regional regression models
 • Geographically weighted regression (GWR)
 • Bivariate models
 • Adaptive bandwidth (bisquare kernel)
Methods

• Evidence for any spatial variation
 • Logistic regression
 • Introducing geographical constrains step by step
 • Model 1 – Baseline (global) model assuming no geographic effect
 • Model 2 – Global model including regional (NUTS1) dummies i.e. allowing for geographic variation but independent of other predictors.
 • Model 3 – Global model including interactions between region and other predictors.

• Regional regression models
Methods

- Evidence for any spatial variation
 - Logistic regression
 - Introducing geographical constrains step by step
 - Model 1 – Baseline (global) model assuming no geographic effect
 - Model 2 – Global model including regional (NUTS1) dummies i.e. allowing for geographic variation but independent of other predictors.
 - Model 3 – Global model including interactions between region and other predictors.

- Regional regression models
- Geographically weighted regression (GWR)
 - Bivariate models
 - Adaptive bandwidth (bisquare kernel)
Methods: geographically weighted regression

• GWR is using ‘a moving window’ technique when calculating regression estimates

\[
\log \left(\frac{\pi_i}{1 - \pi_i} \right) = \alpha + \beta_1 X_{1it} + \cdots \beta_k X_{kit}
\]

• Adaptive bandwidth
• Bisquare weighting function
Results: controlling for regional variation

• Including regional dummies did not improve the model fit

• Including regional interaction terms made a very significant improvement to the fit of the model
Results: regional regression models

• Varying fit of regional regression models
• Not just difference in magnitudes but also on the direction of predictors
• Evidence for spatial variation in the predictors
Results: Geographically weighted regression

- Non uniform relationship between predictors and likelihood to participate in a survey

Table 1 Summary of GWR coefficients

Number of data points= 4146, adaptive bandwidth= 821, pseudo R square= 0.059

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>1st quartile</th>
<th>Median</th>
<th>3rd quartile</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density</td>
<td>-0.0148</td>
<td>-0.0046</td>
<td>-0.0011</td>
<td>0.0018</td>
<td>0.0158</td>
</tr>
<tr>
<td>Fractionalisation index</td>
<td>-2.4460</td>
<td>-1.207</td>
<td>-0.4815</td>
<td>0.3716</td>
<td>2.454</td>
</tr>
<tr>
<td>% owner occupation</td>
<td>-3.932</td>
<td>-0.6548</td>
<td>-0.0704</td>
<td>0.3391</td>
<td>2.239</td>
</tr>
<tr>
<td>Living in flat</td>
<td>-1.159</td>
<td>-0.7448</td>
<td>-0.4928</td>
<td>-0.3697</td>
<td>0.3937</td>
</tr>
<tr>
<td>Violent crime</td>
<td>-0.0043</td>
<td>-0.001</td>
<td>-0.0001</td>
<td>0.0006</td>
<td>0.002</td>
</tr>
<tr>
<td>% unemployed</td>
<td>-16.28</td>
<td>-5.578</td>
<td>-0.906</td>
<td>4.424</td>
<td>16.180</td>
</tr>
<tr>
<td>16 to 24 year olds</td>
<td>-7.113</td>
<td>-2.213</td>
<td>-0.896</td>
<td>0.087</td>
<td>8.283</td>
</tr>
</tbody>
</table>
Results: GWR for population density

Figure 1 and 2 On the left the coefficients for population density estimated with GWR, on the right difference from global estimate
Results: GWR for unemployment

Figure 3 and 4 On the left the coefficients for unemployment estimated with GWR, on the right difference from global estimate
Results: GWR for Living in a flat

Figure 5 and 6 On the left the coefficients for living in a flat estimated with GWR, on the right difference from global estimate
Conclusion

• There is a spatial dimension in survey participation behaviour

• Using regional or other administrative boundaries does improve our model, however these still fail to capture the full picture

• GWR results help us to understand these dynamics further
Caveats

• Relatively small sample size

• Time of data collection

• Limited model of nonresponse
Thanks! Questions?

Kaisa.Lahtinen@Liverpool.ac.uk

Acknowledgements: This work is part of the ‘Auxiliary Data Driven Nonresponse Bias Analysis (ADDReponse)’ project funded by the UK Economic and Social Research Council (grant ES/L013118/1).
Results: GWR for owner occupancy

Figure 7 and 8 On the left the coefficients for owner occupancy estimated with GWR, on the right difference from global estimate
Results: GWR for fractionalisation index

Figure 9 and 10 On the left the coefficients for ethnic fractionalisation index estimated with GWR, on the right difference from global estimate
Results: GWR for violent crime

Figure 11 and 12 On the left the coefficients for violent crime estimated with GWR, on the right difference from global estimate
Results: GWR for 16 to 24 year olds

Figure 13 and 14 On the left the coefficients for 16 to 24 year olds estimated with GWR, on the right difference from global estimate