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Motivation

@ Searching and exploring documents based on the themes that run
through them

o Rather than nding documents through keyword search alone, we
might rst nd the theme that we are interested in, and then exame
the documents related to that theme.

o Probabilistic topic modelinga suite of algorithms that aim to
discover and annotate large archives of documents with theémat
information.

o Note: these algorithms, sometimes in di erent names, are used for
other data types (audio, image, video...)

cry UNlVERSITY
“_ LOND

ML Reading Group Probabilistic Topic Models 3/12



Topic Models (1)

@ Unigram model the words of every document are drawn
independently from a single multinomial distribution

Y
p(w)= " p(wn) (1)
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Topic Models (2)

e Mixture of unigrams each document is generated by rst choosing &
topic z and then generatind\ words independently from the
conditional multinomialp(wjz)
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p(w)=  p(z) p(wnjz) 2)
e
Z w N
M

5 CITY UNIVERSITY
“_ LOND

ML Reading Group Probabilistic Topic Models 5/12



Topic Models (3)

e Probabilistic latent semantic indexing (PLSIit captures the

possibility that a document may contain multiple topics

p(d;wn) = p(d)
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Latent Dirichlet Allocation (1)
o Latent Dirichlet Allocation (LDAY} expands PLSI by introducing priors

on probability distributions

o Better generalisability on new documents
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Latent Dirichlet Allocation (2)

Generative Process

@ Randomly choose a distribution over topics
@ For each word in the document
o Randomly choose a topic from the distribution over topicsstep 1
» Randomly choose a word from the corresponding distributimer the
vocabulary
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Latent Dirichlet Allocation (3)

Graphical Model
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Latent Dirichlet Allocation (4)

Posterior Computation
o Posterior is intractable - need to approximate it
e Variational inference
@ MCMC - Gibbs sampling
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Latent Dirichlet Allocation (5)

Extensions

LDA can be exteded by relaxing some of the original assumptions
e Bag-of-words: Not suitable for language generation
o Solution: Integrating syntax

@ Bag-of-documents: Not suitable for chronologically ordered
documents

@ Solution: Dynamic topic models
@ Number of topics: Assumed to be known and xed
o Solution: Bayesian nonparametric topic models
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Latent Dirichlet Allocation (6)

Open Issues
e Evaluation and model checking: Interpretability over goosa®f t.
o Visualization and user interfaces: Intuitive ways to vissaltopics.
o Data discovery : Seeking help of domain experts.
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