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Motivation

Searching and exploring documents based on the themes that run
through them

Rather than �nding documents through keyword search alone, we
might �rst �nd the theme that we are interested in, and then examine
the documents related to that theme.

Probabilistic topic modeling: a suite of algorithms that aim to
discover and annotate large archives of documents with thematic
information.

Note: these algorithms, sometimes in di�erent names, are used for
other data types (audio, image, video...)
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Topic Models (1)

Unigram model: the words of every document are drawn
independently from a single multinomial distribution

p(w) =
Y

n

p(wn) (1)
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Topic Models (2)

Mixture of unigrams: each document is generated by �rst choosing a
topic z and then generatingN words independently from the
conditional multinomialp(wjz)

p(w) =
X

z

p(z)
Y

n

p(wnjz) (2)
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Topic Models (3)

Probabilistic latent semantic indexing (PLSI): it captures the
possibility that a documentd may contain multiple topics

p(d; wn) = p(d)
X

z

p(wnjz)p(zjd) (3)
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Latent Dirichlet Allocation (1)

Latent Dirichlet Allocation (LDA): expands PLSI by introducing priors
on probability distributions
Better generalisability on new documents
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Latent Dirichlet Allocation (2)

Generative Process
1 Randomly choose a distribution over topics
2 For each word in the document

Randomly choose a topic from the distribution over topics instep 1
Randomly choose a word from the corresponding distributionover the
vocabulary
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Latent Dirichlet Allocation (3)

Graphical Model
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Latent Dirichlet Allocation (4)

Posterior Computation

Posterior is intractable - need to approximate it

Variational inference

MCMC - Gibbs sampling
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Latent Dirichlet Allocation (5)

Extensions

LDA can be exteded by relaxing some of the original assumptions
Bag-of-words: Not suitable for language generation

Solution: Integrating syntax

Bag-of-documents: Not suitable for chronologically ordered
documents

Solution: Dynamic topic models

Number of topics: Assumed to be known and �xed
Solution: Bayesian nonparametric topic models
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Latent Dirichlet Allocation (6)

Open Issues

Evaluation and model checking: Interpretability over goodness of �t.

Visualization and user interfaces: Intuitive ways to visualise topics.

Data discovery : Seeking help of domain experts.
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