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Abstract. For adoption of Autonomous Mobile Robots (AMR) across
a breadth of industries, they must navigate around humans in a way
which is safe and which humans perceive as safe, but without greatly
compromising efficiency. This work aims to classify the Human-Robot
Spatial Interaction (HRSI) situation of an interacting human and
robot, to be applied in Human-Aware Navigation (HAN) to account for
situational context. We develop qualitative probabilistic models of
relative human and robot movements in various HRSI situations to
classify situations, and explain our plan to develop per-situation
probabilistic models of socially legible HRSI to predict human and
robot movement. In future work we aim to use these predictions to
generate qualitative constraints in the form of metric cost-maps for
local robot motion planners, enforcing more efficient and socially legible
trajectories which are both physically safe and perceived as safe.

Keywords: HRI · HRSI · spatial reasoning · Human-Aware Navigation
· Hidden Markov Models · classification

1 Introduction

In industrial applications with environments shared between humans and robots,
AMRs must move safely around humans and in a way which humans perceive
to be safe. Physical human safety in robot navigation can be all but assured by
simply stopping robot motion when anything is detected closer than a minimum
safe distance to a robot’s safety laser(s). This is highly inefficient and usually
conflicts with personal space [9], thus perceived as unsafe.

The work discussed in this paper contributes to the safety stack of the
human collaborative warehouse robots of the EU ILIAD Project [11], aiming to
increase perceived safety by humans while preserving a critically physically safe
system. The safety stack is implemented at four levels. At the highest level,
global planning, robots take human flows into account to generate paths that
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don’t interfere with human motion patterns [19]. The second level affects robot
maximum speeds. If a robot detects a human in its vicinity, it will adapt its
speed to the HRSI at hand. However, if the global path seems unfeasible given
current HRSI, a new path will be triggered to account for the new interaction.
Finally, a safety stop will be triggered if human gets within 0.5m of the robot’s
laser anyways. The ILIAD safety stack is described in greater detail in [7].

This work, involved in the second level of the ILIAD safety stack, addresses
HRSI awareness with per-situation probabilistic models of qualitative
abstractions of human and robot movement. Our probabilistic models use
Qualitative Trajectory Calculus version C (QTCC) [20] to encode the
movements of two positions in space from one point in time to a subsequent
point in time. This lets us represent pairs of trajectories in HRSI as sequences
of qualitative states, where each state describes the relations of the movements
of both human and robot.

The main contribution of this work is the multi-HMM classifier of the HRSI
situation of sequences of qualitative descriptions of human and robot
movement, extending [2] with multi-HMM classification and modelling of
additional situations. The classifier is very fast to train, and fast and accurate
enough at classification to be used in real-time in a safety critical situational
HAN approach. The use of QTC, described in detail in Sec. 3.2, abstracts pairs
of trajectories, decreasing the impact of sensor and tracking error. We train
and test our classifier using data recorded from HRSIs with an automated
Linde CiTiTruck pallet truck, making it more suitable for industrial
applications than approaches which model robot movement after
human-human interaction.

We plan to use the classifier, along with per-situation HMMs of QTCC state
transitions from socially legible HRSI, to predict the socially legible next state
for a HRSI in realtime, given the HRSI’s situation and QTCC sequence. In future
work, we aim to constrain the robot’s local planner to enforce the transition to
this state.

The rest of the paper is structured as follows. We first present other works
within the field of HRSI in Sec. 2. Later on, we describe in Sec. 3 the theoretical
foundations of our system. Implementation and analysis of the system is made
in Sec. 4. Finally we summarise the results and draft future work in Sec. 5.

2 Related Work

Common approaches to robot navigation consider humans the same as any other
obstacle [14], resulting in movements that are inefficient and perceived as unsafe.
HAN is required for legible paths which are more likely to be perceived as safe [6].
Approaches for HAN often consider Hall’s proxemic zones [9], but neglect to
consider the intentions of human’s movement [14].

Predictive models address this limitation by identifying and forecasting
human trajectories. They rely on studying human motion in social
environments, so that most likely paths are known when a similar situation is
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matched. These works propose the use of qualitative domains and symbols to
reduce the complexity of the task at hand [17] and include desired features
(that increase social normativity) [13] with good performance in crowded
scenarios.

However, these approaches do not capture in their motion models the
presence of a robot. There is the implicit assumption that humans will move as
if the robot was just another pedestrian. This is not appropriate for navigation
of heavy industrial robots, which cause humans to feel unsafe when the robot
moves close to them. Also, using these models as path planners for the robot
may not provide the safest route, but instead the most human alike. This is
particularly relevant for the domain at hand: shared warehouse environments.
Within industrial applications, robots need to ensure safety over any other
requirement, so mimicking human trajectories (e.g. cutting through a crowd)
may be discouraged.

Instead of just learning motion models, other authors choose instead to embed
human awareness in more traditional robot planners. This was first proposed
by Lu et al. [16], creating socially aware cost-maps for occupancy grid-based
planners. Similarly, Sisbot et al. [1] uses the so called ”Social Force Model” that
can be embedded in a classic sampling motion planner while accounting for
human proxemics, or Araceli et al. [18], who developed an adaptation of the
elastic band algorithm that accounted for potential human activity spaces.

Our work is in line with those authors, aiming for a description of the human
interaction based on QTC that can be introduced in any planner. QTC used
in our HRSI model describes relative movements of both human and robot [20]
in the same way that two humans walking on intersecting trajectories negotiate
their movements without knowledge of their quantitative positions [10]. A set of
per-situation HMMs of transitions between QTC states can be used to classify
the HRSI situation from QTC sequences generated from pairs of human and
robot trajectories [2]. Here we extend the HRSI situation classification of [10],
modelling additional situations.

3 System definition

3.1 Human Position Tracking

Warehouses are a challenging scenario for people tracking (multiple occlusions,
dim lights, people sitting, kneeling, etc.), which may be a limiting factor for
qualitative HRSI analysis. Our probabilistic HAN model uses human trajectories
obtained with the real-time first-person people tracking system described in [5].
This tracking fuses data from the robot’s on-board RGB-D camera and laser,
which has a limited reach and requires extra computing power, but does not
require any sensors to be installed in the warehouse.

3.2 Probabilistic QTC Model

Our probabilistic QTC model, uses sequences of QTCC states to develop a
Hidden Markov Model (HMM) for each of a set of HRSI situations, defined as
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classes in Sec. 3.3 and extending our previous work in [4]. We encode pairs of
human and robot trajectories using QTC version C (QTCC) [20]. In QTCC,
movements of two agents in space are represented by a 4-tuple of state
descriptors (h1, r1, h2, r2). Each descriptor expresses a qualitative spatial
relation using a symbol ∈ {−, 0,+}. With this 4-tuple of descriptors comprised
of 3 symbols, there a total of 34 = 81 possible QTCC states.

The relations of the descriptor symbols are defined as follows:

h1) movement of h w.r.t. r at time t:
- : h is moving towards r
0 : h is neither moving towards nor away from r
+ : h is moving away from r

r1) movement of r w.r.t h at time t:
The same as h1), but with h and r swapped

h2) movement of h w.r.t the line
−→
hr at time t:

- : h is moving to the left side of
−→
hr

0 : h is moving along
−→
hr or not moving at all

+ : h is moving to the right side of
−→
hr

r2) movement of r w.r.t the line
−→
rh at time t:

The same as h2), but with h and r swapped

where t is the earlier of the two points in time, r is the robot’s position, and
h is the human’s position.

For example, Fig. 1 shows an interaction: human is moving towards the robot
(h1 = −) and robot is approaching too (r1 = −). Human is directly headed to
the robot (h2 = 0) but robot is to its left side (r2 = −).

Fig. 1. QTCC state (−,−, 0,−): human is moving directly towards the robot, while
the robot is moving toward and on its left side.

3.3 Classes of HRSI

In [4] there were two relevant classes in human robot spatial interaction. We
extend this initial classification to account for the interactions in warehouse
environments. Specifically we focus on interactions that require a robot to adjust
its movements to accommodate the human’s. In order to account for these, we
model the following situations (see Fig. 2) with HMMs for our classifier:
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– Passing By on the Left (PBL): Both actors pass each-other on the left side
from their perspective, moving in opposite directions.

– Passing By on the Right (PBR): Both actors pass each-other on the right
side from their perspective, moving in opposite directions.

– Robot Overtakes Left (ROL): The robot passes on the left of the human
while both move in the same direction.

– Robot Overtakes Right (ROR): The robot passes on the right of the human
while both move in the same direction.

– Path-Crossing on the Left (PCL): The robot has to slow or stop movement to
allow the human to move across the robot’s intended path from the robot’s
left side.

– Path-Crossing on the Right (PCR): The robot has to slow or stop movement
to allow the human to move across the robot’s intended path from the robot’s
right side.

– Rejection: Any situation in which a human is detected, but a qualitative
constraint of the robot movement is not required. E.g., RMSH: The robot
moves toward the stationary human, and stops when close. We record
trajectory pairs from examples of RMSH situations to test our multi-HMM
classifier’s ability to reject such situations. For these situations we apply a
default constraint, enforcing safe and comfortable distance between human
and robot. Explanation of these constraints is outside of the scope of this
work, but is detailed in the ILIAD ‘Report on human-robot spatial
interaction and mutual communication of navigation intent’ [7].

Passing By on the Right(PBR)Passing By on the Left (PBL)

Robot Overtakes Right (ROR)Robot Overtakes Left (ROL)

Path-crossing on the left (PCL) Path-crossing on the right (PCR)

Fig. 2. HRSI Classes
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3.4 Creating HMMs for our Multi-HMM Situation Classifier

We consider in this study 6 classes C = (‘PBL’, ‘PBR’, ‘ROL’, ‘ROR’, ‘PCL’,
‘PCR’), exluding rejection, thus we will model 6 different HMMs, where the
observation corresponds to a new state. Each HMM is comprised by |Q| × |Q|
transition matrices listed in Ai, a |Q|×|Q| observation matrix B, and the 1×|Q|
initial state vectors listed in Ii. These account for all possible transitions in
QTCC states Q = ((−− −−) . . . (+ + ++)), as in [20] on each class.

Our system is composed by the collection of transition matrices
A = (A1 . . . A|C|), and initial state vectors I = (I1 . . . I|C|), indexed by class
number. Each element of the list of per-class HMM H = (H1 . . . H|C|) is a
tuple composed by (Ac, B, Ic) with c indexing the class’s name in C, fully
describes our system.

All of the classifier’s HMM share B as their observation matrix. We use B
to account for the possibility of generating incorrect QTCC states due to sensor
and tracking error, assuming a probability t = 0.95 that the true (hidden) QTCC

state matches the emitted QTCC state generated from tracked human and robot
positions. So, we initialise matrix B almost as an identity matrix with some noise,
with diagonal B[i, i] = t and the rest of elements B[h, o] = 1−t

|Q|−1 | (b 6= o).

A list S of recorded QTCC state sequences, generated from human-robot
trajectory pairs, is used to obtain A, and I. First, we map each QTCC state in
each sequence Si to its index in Q. Each state sequence in S will have a class
label assigned li ∈ [1 . . . |C|], so that the list of labels will be L = (L1 . . . L|S|)
and Ls is the class label for sequence Ss. Initially, A and I are assigned
uniform probabilities. Then we use the recorded state sequence list S to model
the probabilities

ILn
[Sn[1]] = ILn

[Sn[1]] + 1 for n = 1 to |S|. (1)

ALn
[Sn[q], Sn[q+1]] = ALn

[Sn[q], Sn[q+1]]+1 for n = 1 to |S|, and q = 1 to |Sn|−1.
(2)

Finally we normalise matrix B, the matrices of A, and the vectors of I, such
that each row sums to 1. With these HMM, we can classify a QTCC sequence
as the class of the HMM that estimates the highest log-likelihood of the given
sequence being observed [21]. If the KL divergence [12] of these log-likelihoods,
normalised to sum to 1, from a uniform distribution of the same size is greater
than a given threshold then the sequence is instead rejected.

4 Experiments

4.1 Laboratory Setup for Recording HRSI Situations

Our robot is a modified Linde CitiTruck equipped with a front-facing safety
laser that automatically stops motors if anything is detected in front of the
robot closer than 0.5m, prioritising human safety over any software command.
We have additional sensors used for human detection, such as a LiDAR and
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Fig. 3. Illustration (left) and photograph (right) of laboratory setup for recording HRSI
situations.

Kinect 2. The robot is controlled using a standard PC running ROS, interfacing
with the sensors, and the pallet truck’s motor controllers. It is one of several
automated pallet trucks belonging to the ILIAD Project. In our robotics lab we
placed coloured tape on the floor, marking start and end positions for the human
and the robot, as pictured in Fig. 3. In the diagram on the left of Fig. 3, arrows
indicate start positions, and crosses indicate end positions. The robot follows
the path between the black positions. In HRSI situations where the robot is
stationary, the robot stays at the start position. When the robot begins moving
it emits a click sound, which we use to signal the human to move. In conditions
where the robot does not move, the experimenter speaks the signal ’go’. We
record the robot and nearest human position on the robot’s metric map, from
when the robot begins moving, to when the human reaches their end position.
Human positions are tracked within an ‘active area’ to reduce the risk of the
experimenter being tracked instead of the interacting human.

The human moves as follows for the different situations:

PBL – The human moves from the green arrow to the green cross, moving to
their left to pass the robot.

PBR – The same as PBL, but the human moves to their right to pass the robot.
ROL – The human moves from the yellow arrow to the yellow cross, moving as

slowly as possible to allow the robot to overtake at a safe speed.
ROR – The same as ROL, but the human moves from the blue arrow to the

blue cross.
PCL – The human moves from the topmost red cross to the other red cross.
PCR – The human moves from the bottom red cross to the topmost red cross.
RMSH – The human stands stationary at the yellow cross, the robot moves

from the black arrow to the black cross.

Training dataset To train our multi-HMM classifier we recorded 35
interactions between a robotics expert and the robot for each of the 6 situation
classes of Sec. 3.3, and 15 interactions for the rejection situation RMSH. A
total of 225 HRSI. We create the multi-HMM classifier’s HMM as described in
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Sec. 3.4, using QTCC sequences generated from human and robot trajectories
using QSRlib [8]. We use QSRlib’s ‘collapse’ feature when generating all of our
QTCC sequences from HRSI, to remove repeating states, reducing the variance
between sequences from HRSI of differing length. We used 3-fold cross
validation for preliminary estimation of our classifier’s performance, to measure
the likely impact of changes to our model to its ability to classify HRSI
situations beyond those recorded in this training set.

Test dataset To test the ability of our multi-HMM classifier to classify the
situation of spatial interactions between the robot and non-experts of varied
age, gender and cultural background, we conducted a study. In this repeated
measures study, participants enacted HRSI situations using the methods
described in Sec. 4.1. These situations were enacted in a randomised order,
with each participant also performing 1 of a set of 5 rejection situations, chosen
at random. We realised in hindsight that only 1 of these situations, RMSH,
would need to be rejected by our classifier as the others did not involve the
robot moving. Thus with 11 participants, we recorded a total of 66
interactions, including 2 RMSH interactions. We created the multi-HMM
classifier’s HMM using QTCC sequences from the training set, and evaluated
its performance in classifying the HRSI situation of QTCC sequences from the
study’s HRSI. Training of the classifier took only 50 ms to execute. Each
classification took 60ms to execute on average. The number of interactions
recorded per class is detailed in the study’s confusion matrix in Sec. 4, which
has its statistics explained in Sec. 4.2.

4.2 Results and Discussion

Fig. 4 is a confusion matrix containing metrics of the performance of the classifier
at predicting the HRSI situation from QTCC sequences in the test set described
in Sec. 4.1, trained on sequences from the training set described in Sec. 4.1.
The cells of the confusion matrix with a green or pale red background contain
the count of classifications for the predicted class and actual class given by the
cell’s row and column respectively. Below each of these counts is the count as a
percentage of the total number of classifications. The rightmost column of the
matrix contains, in this order, the count of QTCC sequences classified as the
row’s class, and the precision and False Positive Rate of classifications as the
row’s class. The bottom row of the matrix contains, in this order, the count of
QTCC sequences that are labelled with the column’s class, and the recall and
False Negative Rate of classifications as the column’s class. The bottom-right cell
contains, in this order, the total count of all classifications, the overall accuracy,
and the overall misclassification rate.

The classifier’s overall accuracy is high at 95.45%, as it must be as a
component of the safety focused HAN approach in ILIAD. The ability of our
qualitative probabilistic model to accurately classify HRSI with 11
non-experts, trained on HRSI with 1 robotics expert, demonstrates the benefit
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Fig. 4. Confusion matrix for validation of our multi-HMM classifier using QTCC

sequences from study HRSIs as test data.

of abstracting HRSI to a qualitative description. It should be noted that while
no rejection situations were misclassified, the precision of rejections is relatively
low at 66.67%. This could be due to the small number of RMSH interactions
recorded in our study, as explained in Sec. 4.1, as 3-fold Cross-Validation using
the training dataset with its 15 RMSH interactions showed much higher
rejection precision at 78.95%. The classifer is much less likely to confuse any of
the other 6 classes, with precision and recall > 90% for all of these classes. We
hope that we can improve the rejection precision and in turn the overall
accuracy of our classifier by recording more examples of RMSH interactions
and other rejection situations.

Our classifier is able to identify an interaction from a QTC sequence in less
than 100ms. Each QTC state in our system is obtained almost instantaneously
given current robot and human positions, which means that the limiting factor
in our pipeline is the human tracker module itself. The current tracker [5] has an
average rate of 25 Hz which sufficiently accounts for socially normative human
behaviours and speeds, e.g. the mean human speed of 0.58 m/s and maximum
robot speed of 0.91 m/s recorded in our study. The maximum human speed we
recorded was 2.28 m/s, close to jogging speed, but these high speeds are not
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represented frequently in our study. When an interaction is not classified or is
given the rejection class, a default constraint described in Sec. 3.5.1 of [7] is
applied to ensure safe and comfortable human-robot distance at all times, and
a safety laser stops the robot motors when within 0.5m of the human.

We ‘collapse’ QTC sequences, removing consecutive repeats of states to
account for variation in sequence length caused by varying temporal length of
interactions. We plan to include a more robust tracker [15] capable of tracking
humans at higher speeds, and we may consider QTC formulations that include
speeds in their state description. We may also replace our HMMs with
Continuous-Time Hidden Markov Models (CTHMMs) which better describe
sequences where states are observed at irregular times [15]. All of these offer
the possibility to extend our system to identify and react to non socially
normative situations.

5 Conclusion and Future Work

We have presented here the framework used in the ILIAD Project to classify
HRSI situation. If global planning is unable to create paths avoiding HRI, the
classified situation will define how the intermediate safety layers will react in
ILIAD. An efficient and accurate prediction will have a direct impact in the
number of safety stops triggered by the lowest safety layer. Future work will
evaluate the performance of this approach in the project’s overall safety
architecture.

The high accuracy of our multi-HMM HRSI situation classifier when tested
on the HRSIs recorded in our experiment demonstrates its suitability for use in
a situational HAN approach, with some room for improvement in the precision
of rejection, which may be possible by taking the steps described in Sec. 4.2.

While this fully describes the applicability of our work in a qualitative
HAN approach, we have not tested the systems in this paper with QTCC

sequences generated from partial interactions, needed to be applied to
real-time robot navigation in the presence of humans. We will address this in
future work, developing a continuous real-time implementation of our classifier
that informs qualitative constraint of robot motion. The real-time HAN system
should be tested on an industrial AMR in its ability to improve perceived
safety and social legibility of robot movement in HRSI, while minimising
safety-laser stops. For this real-time system, we aim to continuously classify the
situation of a HRSI, making a new classification each time a QTCC state is
added to the sequence representing the interaction, and providing situational
robot motion planner cost-maps enforcing a qualitative constraint of robot
motion, i.e. [7], in order to improve perceived safety with socially normative
movement, extending [3]. When multiple constraint cost-maps are to be
applied simultaneously, the union of these is used to constrain the robot
motion appropriately for simultaneous HRSIs with any number of humans.
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For data to train the HMMs and validate this approach, we look to label and
process trajectory pairs in larger datasets, then test in real-time on our robot in
a real warehouse, interacting with human workers.

We hope to use the qualitative constraint cost-maps to communicate the
robot’s navigation intention, e.g. projecting on the floor in green on areas of
high-cost, and red on areas of low-cost as conditioned symbols for ‘go’ and ‘don’t
go’.
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